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The problem of the stability of motion in a circular orbit in a central Newtonian field of force of an elastic 

artificial satellite, modelled as a free solid body with an arbitrary elastic section connected to it, is 

considered in a limited formulation. Using Routh’s theorem and assuming that the vector of small 

deformations of the elastic section can be represented in the form of a finite series in the known eigenmodes 

of its free oscillations [l] and certain others, the positions of relative equilibrium of the spacecraft 

(numbering 24) are obtained. The positions of equilibrium in which the elastic section is deformed are 

found approximately. The sufficient conditions for the stability of the positions of equilibrium obtained are 

found, and the necessary and sufficient conditions that the elastic section should be undeformed in a 

position of equilibrium are indicated. An example of an artificial satellite modelled as a solid body with an 

arbitrary rectilinear elastic rod attached to it is considered. 

1. FORMULATION OF THE PROBLEM 

CONSIDER the motion in a central Newtonian field of force of a spacecraft modelled as a solid body 
with an elastic section attached to it. We will assume that we can neglect the effect of the motion of 
the spacecraft relative to its centre of mass on the displacement of the latter in a Kepler circular 
orbit of radius R with constant angular velocity w around an attracting centre. 

To describe the motion we will introduce the following right rectangular Cartesian systems of 
coordinates: Oy,y,y, is the orbital system of coordinates with a pole at the centre of mass of the 
satellite, denoted henceforth by the point 0, the Oy3 axis with the vector y is directed along the 
radius-vector of the point 0 with respect to the attracting centre, Oy2 and Oyl with unit vectors p 
and (Y, respectively, are directed along the binormal to the plane of the orbit and along its 
transversal at the point 0 in the direction of motion of the centre of mass of the satellite, 01x1x2x3 
is a system of coordinates rigidly connected to the satellite, the pole O1 of which is placed at the 
centre of mass, while the axes are directed along the principal central axes of the undeformed 
satellite, ik is the unit vector along the Olxk axis, 0x1x2x3 is a system of coordinates with a pole at 
the centre of mass of the satellite and unit vectors of the axes ik, respectively, R is the angular 
velocity of the trihedron 0x1x2x3 with respect to Oy,y2y3, and o = o@ is the vector of the orbital 
angular velocity of the orbital system of coordinates. 

We will define the positions of relative equilibrium of the spacecraft as the state of rest with 
respect to the orbital system of coordinates. If the elastic section is in a deformed state in a position 
of relative equilibrium, the position of equilibrium will be called non-trivial. 

Suppose the points of the solid of the satellite occupy the region VI C R3, the points of the elastic 
section in the undeformed state occupy the region V, C R 3, I7 is the common boundary of the regions 
VI and V, and V = VI U V,. We will assume that the regions are specified in 01x1x2x3; 
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r = x1 i’ + x2i2 +x3 i3 is the radius-vector of an arbitrary point of the spacecraft in the natural state 
with respect to the point Or and u(t, r) is the vector of small deformations of the point defined by the 
vector r. The function u: (t, r) + u(t, r) E R3 possesses sufficient smoothness with respect to c and 
r, tE [to, m), r E V, u(t, r) = 0 when r E VI. The radius vector of the centre of mass of the elastic 
satellite with respect to point Or (m is the mass of the spacecraft) 

p=m-’ I(r+u)dm=m-’ Judm 
V V 

We will indicate the assumptions under which we consider the motion of the satellite. 

Assumption 1. The vector of small deformation of the points of the elastic section of the 
spacecraft in certain orthogonal local systems of coordinates with unit vectors fk (k = 1,2,3) can be 
represented by a finite series [l] 

where w, (r), u, (r), v, (r) are natural modes of the free elastic oscillations of the section in a local 
system of coordinates and q,k(t) are generalized coordinates corresponding to the natural forms 
CCI, (N = 3n). 

Assumption 2. Taking representation (1.1) into account in the expression for the inertia tensor of 
the satellite about the point 0 

J~_f((r+u---)E-(rtu-~):(r+u--~))dm 
V 

where a : b is the diadic product of the vector a and 6, we will neglect terms that are non-linear in qn , 
i.e. we will assume that 

J=J,+ $ qnJ,, (1.2) 
n= I 

where Jo is the inertia tensor of the satellite in the undeformed state with respect to the point Or, E 
is the unit tensor and 

J,=v~(2r\lr,E-~n:r-r:Jln)dm 
1 

(1.3) 

Assumption 3. The central ellipsoid of inertia of the spacecraft in the undeformed state is triaxial. 

Assumption 4. We will take as the potential energy of the force of gravitational attraction fIp its 
approximate expression calculated to within terms of the order bf L3Re3, 
characteristic linear dimension of the spacecraft [l] 

b = - F + f wz(3yJy- tr J) 
& 

Assumption 5. We will represent the potential energy of an isotropic elastic 
deformations [3, 41 

1 3 
n=- / ~ EijOildV=- 

: I, r?& .E I = 1 
bnnkhnnEk& 

2 V, i/=1 

taking (1.1) into account in the form 

Cnm4n4m 

where L is -the 

(1.4) 

section for small 

(1.5) 
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where c,, , amnkl are constant coefficients and the N X N matrix C = 11 c,, 11 is positive definite, and Eij 
and uii are components of the tensor of the infinitely small strain and stress in a local system of 
coordinates. 

The different approaches when setting up the equation of motion of complex mechanical systems 
are described in [2,3] and, in the case considered, with assumptions 1-4, are obtained, for example, 
from the equations in [3]. 

Note. Assumption 2 corresponds formally to the fact that in the equations of motion we are 
neglecting terms that are non-linear in qn and q,,, , and their derivatives. 

We know [24] that the equations of motion of the spacecraft in the case considered, in addition 
to partial integrals of the direction cosines 

u, =Ty-- 1 =o, u* r&3- 1 =o, .!_J, =yfl=o (14 

admit of an integral of the Jacobi type 

Us YinJa t S2G t Tt ll + lls - %.wJo = const (1.7) 

where G and Tare the vector of the kinetic momentum about the point 0 and the kinetic energy of 
the satellite in its relative motion. 

Using (1.1) we obtain 
N N 

c=jprt u-p)X (W-jr)& = z q;,(G,t is G,,q,) 
V 

(14 
fl=l m=l 

(1.9) 

( y f a( yar, G, = 6’ X (I)/, - m -’ ;$,dm)dm 

G,, E L(J/, - m-‘Efi,dm) X (+p - m-‘$ti,dm)dm 

anp E 1 (tin - m -l~Wm) (IL, - m-‘iGpdm) dm 

From Routh’s theorem [5], if values of the variables 

a=@, P=P, r=7O. %I=& 4n=4; @=1,2,...,N) (1.10) 

exist which give the integral U an isolated minimum for fixed values of the integrals Ui , then these 
values, generally speaking, will correspond to one of the real motions of the satellite and this motion 
will be stable with respect to 0, p, y, ql, . . . , qN, q; , . . . , qk. 

2. POSITIONS OF RELATIVE EQUILIBRIUM 

Suppose the new variables 

a* ZR_@, p’Efl_@, 7*z7_YO, q,:-qn_q;, q;‘zq;I-q~’ 

To determine the values of (1. lo), which give the integral (1.7) stationary values under conditions 
(1.6), we will use the method of undetermined Lagrange multipliers 

Iv= u+ 302X(q0)U3 - “h w20(q0)(/, + y. w2v(q0)U2 (2.1) 

Here q* -(qT, . . . , qk)T, q*’ = (q;‘, . . . , qk’) etc., A(q’), cfq’), o-(4’) are undetermined 
Lagrange multipliers and the sign T denotes transposition. The equations for finding the quantities 
(1 .lO) and the undetermined multipliers can be obtained from the equation 

6W=O for n*=O, p’=O, y’=O, q’=O, q”.=O. 

They can be written as follows: 
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707u-l=O, $p”-l=O, 7O$=o 

3wZ((J - oE)yO + Xpo) = 0 

02((VE-- J)$ + 3A79= 0 

+ !i2°J,s20+s20 iit! G,,qo,‘t E cnmq; - 0,s w2$J,$ + 
m=l m=l 

1 
+ f wz70J,7e - 2 u2trJ, = 0 (n=l,...,N) 

JQ” + ; G&qo,‘=O, 
m=l m=l 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

J=J(q*=O)=J(qO)=Jo+ ; q”,J,, G; ‘G, + : Cm,&, 
n= 1 m=l 

The quantities G, and G, are defined in (1.8). 
Note. The function W is a combination of the integrals (1.6) and (1.7) written in perturbations with respect to 

the unperturbed values (1.10). The writing of the integrals (1.6) and (1.7) and Eqs (2.2)-(2.5) in tensor form 
indicates the possibility of choosing the system of coordinates that is most convenient for solving (2.2)-(2.5) 
and for investigating the conditions of stability of the steady-state motions obtained. 

We will denote the system of coordinates with pole at the point 0, in which the matrix of the 
components of the inertia tensor J(q’) is diagonal, by 0x0x0x0 1 2 3, and we will suppose that ek(qO) are 
the unit vectors of the corresponding axes and p (4’) is the orthogonal matrix of the transition form 
(Oxlxzxs) and Ox~x~x~. 

For the matrices of the component of the tensors encountered in the present paper, unless stated 
otherwise, in the axes Ox~x~x~ we will use the same notation but without distinguishing them by 
boldface type. 

The kinetic energy To of the satellite in its motion about the centre of mass is a positive definite 
quadratic form with symmetrical matrix D(q) with respect to the quasi-velocities (a + w) and the 
generalized velocities q’, which vanish when R + w = 0, q’ = 0 

1 
To = 5 (P+w,q=‘) D(q) ( 

a2+w 

4 ) 
. 

J(qO) G': . . . Gk 

@= 1111 . . . UlN 

D(q”)=ll~,~II= I . * 

GOT N UN1 --. aNN 

and consequently no= 0, q”’ = 0 is the unique solution of (2.5) since det D (4’) # 0. 
Multiplying the first equation of (2.3) by PT and the second equation by yT, and taking (2.2) and 

the equation .Z = Jr into account, we obtain A(q’) = -pTJy, A(q’) = pTJy, whence we conclude 
that A(q’) =O while (ofq’), y) and (v(q’), p) are natural pairs of J(q’). 

We will determine the eigenvalues #(q”) and the eigenvectors ek(qO) of the matrix J(q’) by the 
method of perturbation theory (see, for example, [6]), apart from terms that are linear in q,, . With 
the same accuracy as in Assumption 2 we will determine the inertia tensor of the spacecraft from 
formula (1.2). 

Suppose I, Z. and Z, are symmetrical matrices of the components J, Jo and J,, respectively, in the 
Oxlxzxs system. 

Then 
N 

CIk(qO)=llk+ z: 4onlk /A; = zik, (2.6) 
n= 1 
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(2.7) 

where (p’, ik) is the natural pair of the matrix Zc=diag(p’, p2, p3). 
In the 0x1x2xs system the column of components 8 of the vector ik is obviously equal to ik = (if, 

ii, i’;), 8‘ = Sjk, where sjk is the Kronecker delta, while the column of components ek(qo) of the 
vector e t (4’) in 0x1x2x3 is defined by (2.7). The orthogonal transfer matrix (calculated apart from 
terms that are linear in q:) P(q”) = (el(qo), e2(q0), e3(q0)), while by the theorem on the conversion 
of the components of tensors on changing to a new system of coordinates 

J(q* = O)=J(q")=P(qo)(Zo + ng lq:Z.)Pr(qo)= diag01t~o),~Z(~0),~3t~0)) 

Jfl +Y~OY”olO) 
The solution of Eqs (2.1)-(2.5) in projections on the Ox~x~x! axes can be written as follows: 

Vk,l,mEfl,2,31, kfl+m 

a; = 0, q$’ = 0, q: = C-‘M 

X(qO)‘O, v(q’)=#(q’), pf = f 6,k,‘~(q”)=Pm(q0)9 7: = * aim (2.8) 

where M = w2 (MI, . . . , it&,)=, M,, = ru,-pcL,m+I/2pf,, and due to the smallness of q: in (2.4) we 
haveassumedZ,=Z,(n=l,...,N). 

In order to obtain the values of the variables IR”, Do, 7” in the 0xlxzx3 system, it is sufficient to use 
the matrix P-‘(4’). 

Hence, we have proved the following assertion. 

Assertion 2.1. With Assumptions l-5, in order that a trivial position of relative equilibrium 
(q: = 0) should exist it is necessary and sufficient that 

vn=1,... ,N, /.l,” -&0,5Z.l~=0. 

Assertion 2.2. With Assumptions 1-5, the set of positions of relative equilibrium (2.8) of an elastic 
satellite, with respect to the principal central axes, constructed for a given position of equilibrium, is 
characterized by the fact that these axes are directed along the axes of the orbital system of 
coordinates and in this sense the set of positions of relative equilibrium of the elastic satellite 
coincides with that for a solid [7]. 

It follows from (2.8) that the number of different positions of equilibrium of the spacecraft in a 
circular orbit is 24. The set of positions of equilibrium of an elastic spacecraft can be divided into six 
groups with four positions of equilibrium each, if we specify for a group, for example, the direction 
of the vector e3(q0) along one of the axes of the orbital system of coordinates in the positive or 
negative directions. The four positions of equilibrium which thereby occur in each defined group are 
specified by the direction of the vector e2(q0) along any other axis of the orbital system of 
coordinates (e3 (4’) _L e2 (4’)) in the positive or negative directions. 

3. STABILITY OF THE POSITION OF EQUILIBRIUM 

To obtain the conditions for the relative positions of equilibrium obtained to be stable we will use 
the standard method (see, for example, [5]). We will introduce the following notation: 
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Ye+1 =qi, * - . ,Y6+N =d’ 

y7+N s ni, -. . ,Y9+N z ai, Y9+N+l aqi’, - - - ,Y9+2N =qE 

where in the matrices A,, B, the derivatives are calculated on the unperturbed motion Q,* = 0, 
7; = 0, pi* = 0, q* = 0, q*' = 0 (i = 1, 2, 3,), and we assume that 

det 3 
II /I 

f,j= 3 

f0 
aY/ f,j= 1 

If the quadratic form yTAy is positive definite on a linear manifold (B,Y)~ = 

bily1-k . . * +~~,cJ+zvY~+zN = 0 (i = 1, 2, 3), the values of the variables (2.8) will correspond to a 
local minimum of the integral c with conditions (1.6). 

Introducing the determinant 

8 B 
A=- 

i I B: A. 
(3.1) 

where 0 is the 3 x 3 zero matrix, the necessary and sufficient conditions for this quadratic form to be 
positive definite on the liner manifold can be formulated as the condition of strict positivity [5] 

A, >O,As >O,. . . ,A9+2~‘A>o (3.2) 

where An is the principal diagonal minor of order )2 (n = 7, . . . , 9 + 2N). 
If we expand the determinant A using Laplace’s theorem [8] with respect to the first three rows, 

and then with respect to the first three columns, conditions (3.2) can be replaced by the equivalent 
Silvester determinant conditions of the positive definiteness of a matrix 

A B 
H= 

I 1 
BT w-‘C 

A = diag(Jkk(qO) - /““(qO), .“(4O) - Jmm(qo), Jkk(qo) - J”(q’)) 

BT = (x,,y,, z.), x, = 2(Jfm(qo), . . . ,J;m(qO))T 

y. = d3v:“(q0), . . . ,Jjy+fy, z, = ($‘(q”), . . . , P’(qO))T 

The positive definite matrix C was introduced in Sec. 1. 
TheNxNmatrixS=W2C-i= ]Isi.ll is positive definite and symmetrical [9]. 
Suppose (~~(0,l)suchthat ?(qd)-Jmm(qo)= (l- a)(Jkk(qo)-Jmm(qo)),Jkk(qo)-J"(q')= 

a(.Pk(qO)-FyqO)). 
We will denote by a t, a2 and a3 the roots of the cubic equation 

t3 - t2p+ tg-t=O (3.3) 

P=(Y,Y)+(x,x)+(z,z) 

s=~~,~)(Y,Y)-~~,Y)2~~Y~Y)(~~~)-(Y~~)2+~~~~)~~~~)-~~~~)2 

(4 x) KY) (x. z) 

r = (XY) cv,Y) OlPZ) 

(x, z) 01. z) (z. z) 

Here and below 



524 S. V. CHAIKIN 

(x.x) =x:sx., (y,y)=(l -a)-‘y:Sy., (z,z)Ea-‘z:Sz, 

(x,y)-(1 -a)-‘x:Sy., (x, ~)rcr-~x~Sz, 

(Y, z)zaa-l/‘(l -a)-‘y:Sz, 

The larger root of the quadratic equation (t- (x, x))(t- (y, y)) - (x, y)’ = 0 will be denoted by 
a,, 4, = o.~((x,x)+(~,Y))+(o.~~((x,x)+~~,Y))~+(x,Y)Y. 

We will assume [8] that al <a2~a3 if Eq. (3.3) has three different (or a multiple of three) real 
roots, when there are two multiple roots we will denote the simple one by u3, and when Eq. (3.3) 
has one real root, we will denote it by a3. 

Using the well-known formula [9] for determinants det H = det (wm2C) x det (A - BSBT) we 
obtain the following assertion. 

Assertion 3.1. To satisfy conditions (3.2) it is necessary and sufficient that 

Jkk(qO) >J”(qO) >Jmm(qO) > 0 

Jkk(40)-Jmm(40)>max(fz,,a~) 

if Eq. (3.3) has one real root (it can be of multiplicity three) u3, otherwise 

(3.4) 

(3.5) 

Jkk(4O) - Jmm(qO) > a, 

a1 <Jkk(qo) - Jmm(qo)<az or Jkk(qo) - Jmm(qo) >a3 

det(lldij(4”)11$~ I)>0 (n= 1,. . . ,3+h) 

det(llc~jIl:~~~)>O (p=I,...,N) 

(3.6) 

(3.7) 

Conditions (3.4) can be regarded as the sufficient conditions for the stability of an elastic 
spacecraft frozen in a position of equilibrium (2.8) [5, 71. Conditions (3.7) are the Silvester 
determinant criterion of the positive definiteness of the matrices D(q”) and C, respectively. 
Without investigating the roots of Eq. (3.3) we can conclude that when the number of tones taken 
into account is increased (when N is increased), conditions (3.5) and (3.6) become more rigid (the 
value of a, increases). 

In addition to conditions (3.4)-(3.7) we will give the sufficient conditions for (3.2) to be satisfied, 
which is a consequence of a well-known theorem [9]. 

Assertion 3.2. For conditions (3.2) to be satisfied it is sufficient that H should be a matrix with a 
strict diagonal predominance, i.e. 

Jkk(40) - Jmm(40) > 2,4 1 I J,km(40)l, Jkk(40)-J11(40)> ; lJ,k~(4O)l (3.8) 
n= 1 

- + 21J;m(40)l+ d/3 lJ;“(4’)1+ lJik’(4’)l (i= 1,. . ,A’) (3.9) 

dew~i~(4”)ll~;f ;)>a (n= 1,. . . ,Nt 3) (3.10) 

4. EXAMPLE 

Suppose the spacecraft is modelled as a solid body to which is attached a uniform elastic rod of unit length 
and constant circular cross-section F at one end in a rectilinear and undeformed state, where the rest mass of 
the rod is T = Fpl and p1 is the density of the rod. 
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The unit vector Fl of the axis of the undeformed rod is specified by the direction cosines with respect to the 
Oxlxzxs axes, fi = ai’ + bi* + ci3, a2 + b* + c? = 1. Hence, the axis of the rod does not coincide with any of the 
principal central axes of the spacecraft in the undeformed state. 

The radius vector of an arbitrary point of the axis of the undeformed rod is given by the expression 
r(s) = (r”+s)fi = rlil +r2i2+r3i3 = (r’+s)ai’ +(r”+~)bi2+(~0+~)ci3, where r” is the distance from the point 
Oi to the fastening of the end of the rod. We will assume that during deformation the rod executes small 
longitudinal-bending vibrations so that its cross-sections remain planar and perpendicular to the undeformed 
axis (Kirchhoff’s hypothesis) [4]. 

In a local system of coordinates the unit vectors fi (j = 1, 2, 3) 

h 

u(t, s) = wf, + uf, + uf, = 2 (4Aw,f, + ‘I&f, + q&f,) (4.1) 
?l= 1 

where the natural forms of its free elastic vibrations [3] 

w, = sin(6is) 

u,=v,=(sin6;ch6;- cos6f,sh6~)-‘((sh6:,+sin6~)(ch6~s-~osd~s)- 

- (ch 6; + cos 6;) (sh 6;s - sin 6;s)) 

(# is the nth root of the equation cosS = 0) while S*, is the nth root of the equation ch Gcos S+ 1 = 0). 
We will assume that for finite rotation around an axis specified by the unit vector i’ x fi/l i’ X fi 1 (i’ x fi # 0) by 

an angle x<180”, cosx = a, and the unit vectors ik change into fk (k = 1, 2, 3). We give below a table of the 
direction cosines of the unit vectorsfk in the OIx1x2x3 axes [l] 

I i’ i’ i’ 

f 2 

f 2 

a =g,, 

-b =gl, 

“E&T,, 

b' 
I---- ‘g 

l+a ” 

c=g,, 
cb 

- - =g 
l+a 31 

4 I -c =g,, - cb 
- eg 
l+a ” 

In the Olxl~2~3 axes, expression (1.1) has the form 

u(r, r) = g qn(O~Ln(s) 
n=l 

whereforeachj=l,..., h,i=1,2,3weassumep=i+3(j-1) 

qp = q;, tip = (gliwj)i’ + (g2juj)i’ 

Cl 
l- Fa =g33 

(4.2) 

+ (g3iujV (4.3) 

Henceforth we will confine ourselves to considering three terms in (4.2), assuming h = 1 in (4.1). In this case 

rr=0.5(c,,& +c*z’i: +c>,4:1 (4.4) 

Using formulas (4.3), (1.3) and (2.6) from (2.8) with m = 3, k = 2 and 1= 1 we obtain 

Q; = --wzcl ,-‘cg: i - 3g: i )I, 

4; = -Jc;:(‘%, * - 3X, 1 )I,& 1 (4.5) 

4: = -w*c;: (g, , - 4&T, 1 )I,& ). 

Formulas (2.7) in this example have the form 

e1 (q”) = i’ 
P P i2 _ ~1) is 11 

Ir’ -tJ= Ir’ -pa 

e’(q”) = 
P 

--.JL.- i’ + i2 P ” 
p1 --LIP 

i3 
Ir’ -Mu’ 
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e3(qo) = 
P 

II i1 + P ” 
I.r’ -p’ 

i2 + i3 
cI= -/.A” 

P I2 =2q~g11g,,lw+410(g,,g,I +g,,g*,vu+cl:(g,,g,, +g,,g,,)I” 

P 13 =24~g,,g,,Iw+.~(g,,g,‘, +g,,g,,)l,+q~(g,,g*,+g,,g,,)l” 

P I3 =24~g1,g,,Iw+q:(g,,g,, +g,Ig,,)44+q$(g,,g,, +g*,g,~v” 

Assertion 2.2 can be made more specific for this example as follows. 

Assertion 4.1. With Assumptions l-5, the elastic rod in a position of relative equilibrium will be undeformed 
if and only if it is situated along one of the principal central axes of the spacecraft in the natural state and 
simultaneously along the tangent to the unit vector. We will get the following assertion from Eq. (4.5). 

Assertion 4.2. With Assumptions l-5, if the elastic rod is situated along one of the principal central axes of 
the spacecraft in the undeformed state and is perpendicular to the plane of the orbit, then in a position of 
relative equilibrium the rod will be compressed, and if the rod is situated along the radius of the orbit to an 
attracting centre (from it), then in a position of relative equilibrium it will be compressed (elongated), and in 
both cases there will be no bending strains. 

Note. Assertions 4.1 and 4.2 remain true if one takes into account any number of tones [modes] in (4.2). The 
“sufficient part” of Assertions 4.1 and 4.2 has been derived in a number of papers (see the review in [2-4]), and 
can be obtained without Assumptions 1 and 2. 

For the example considered, in view of the complex nature of conditions (3.4)-(3.7) we will give the 
sufficient conditions for stability of the relative positions of equilibrium (3.8)-(3.10). 

Suppose the axis of the rod is situated along one of the principal central axes of the spacecraft in the 
undeformed state and perpendicular to the plane of the orbit. We will assume that m = 3, k = 2,1= 1, grt = 0, 

gzl = 1 and g31 = 0; then from (4.5) we have q! = qi = 0, qy#O, P(q”) = E. If we denote by A1 the 
moment of inertia of the spacecraft in the undeformed state about the transversal at the point 0, by A2 
the moment of inertia about an axis perpendicular to the plane of the orbit and passing through 0, and by A3 
the moment of inertia about an axis directed along the radius-vector of the orbit, passing through 0, then 
conditions (3.8)-(3.9) take the following form: 

1. 

2. 

3. 

4. 
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